Search the whole station Hot Product Catalog

Gold Mineral Processing: CIP Carbon-in-Pulp Process

Blog 6950

Precious metal metallurgy and mineral processing engineering remain a field deeply cultivated by mining professionals. After years of data analysis and customer feedback, CHUNLEI discovered that the root cause of low recovery rates lies not in chemical process defects, but in carbon management. While the carbon-in-pulp (CIP) process appears straightforward, the physical dynamics between carbon and pulp—such as carbon transport, adsorption, screening, and regeneration—ultimately dictate the project’s profitability. This article analyzes key design details of the CIP process, explaining how CHUNLEI engineers these systems to enhance gold recovery from carbon-in-pulp fines.

mining-news_Gold-Beneficiation-CIP-Carbon-in-Pulp-Process
Modern CIP Gold Extraction Plant

CIP, also known as the carbon-in-pulp process, is a mature gold extraction technology. It operates on a “leach first, adsorb later” model. During the leaching stage, gold carriers are fully dissolved across multiple leaching tanks. Subsequently, the pulp is adsorbed by activated carbon. Unlike carbon-in-leach (CIL) processes, which combine leaching and adsorption, CIP separates these steps, offering operators greater control flexibility.
The CIP process employs a counter-current flow design: the pulp flows forward from the first tank to the last, while the activated carbon moves in the opposite direction, from the end toward the front. This design ensures that highly active carbon consistently contacts low-concentration gold solution, maximizing adsorption and minimizing gold loss.
Because leaching and adsorption operate independently, operators can better control parameters at each stage and make timely adjustments. This design is particularly suitable for complex ores and mineral processing requiring staged treatment.

Gold Mine CIP Carbon-in-pulp
Complete CIP in Place Gold Extraction Process Flow Chart

Based on CHUNLEI’s analysis of data from 87 CIP plants worldwide, it was found that:

Performance MetricsIndustry AverageOptimized achievable valuesIncrease
Gold Adsorption Rate94-96%99.2–99.8%2.95
Gold Load per Carbon4000-6000 g/t8,000–12,000 g/t100%
Cyanide Consumption0.8-1.2 kg/t0.4–0.6 kg/t-50%
Carbon Loss Rate15-25%/year5–8%/year-70%

  • Uneven Carbon Distribution: Leading to excessive saturation in some areas and underutilization in others
  • Low Screening Efficiency: Fine carbon losses account for 40-60% of gold losses
  • Incomplete Regeneration: Activation recovery rate only reaches 70-80%
  • Imprecise Oxygen Control: Fluctuations in dissolved oxygen cause a 5-10% decline in leaching efficiency

Achieving high gold recovery rates requires precise, systematic management of material and chemical flows. The CIP (Carbon-in-Pulp) process is an interconnected continuous operation whose efficient execution begins with a critical preparatory stage—slurry preparation.

Crushing-and-Screening
Crushing-and-Screening
Grinding-and-Classification
Grinding-and-Classification

Gold ore is crushed and grinded to the target particle size (typically 95% passing 200 mesh) to break it down. Concentration and impurity removal are then performed using hydrocyclones, vibrating screens, etc. (impurity removal >98%, hydrocyclone underflow concentration >65%) to prevent clogging of downstream equipment. Finally, parameters such as pulp concentration are adjusted to prepare for cyanide leaching.
The combination of high-frequency vibrating screens and hydrocyclones elevates impurity removal from 85% in traditional processes to 98%, significantly reducing interference from gold-displacing substances.

Mixing-tank

Cyanide is added to the pulp in a series of tandem leaching tanks, dissolving gold through chemical reaction. As the pulp sequentially flows through multiple leaching tanks, adding cyanide to the final tank achieves over 90% gold leaching efficiency.

Intelligent Oxygen Control System:

  • Real-time Monitoring: Dissolved oxygen sensors installed in each tank
  • Automatic Adjustment: Oxygen injection rate automatically adjusted based on gold concentration feedback
  • Energy Savings: 35% improvement in oxygen utilization, 30% reduction in cyanide consumption

Activated carbon is added to the cyanidated pulp, which flows countercurrently with the carbon through multiple adsorption tanks. Carbon is introduced into the final tank with the lowest gold concentration and progressively transferred to the initial tank with higher gold content. Gold-loaded carbon is ultimately discharged from the first tank. Gold adsorption typically exceeds 99%.

Five-stage countercurrent adsorption tank configuration:

Trough NumberGold Concentration (g/t)Carbon Concentration (g/L)    Carbon Load Capacity (g/t)   Adsorption Efficiency
Trough 110月15日15-208000-1200085-90%
Trough 22月5日20-254000-600090-95%
Trough 30.5–1.525-302000-300095-98%
Trough 40.1–0.530-35800-150098-99%
Trough 5<0.135-40200-50099-99.5%

Key Carbon Management Technologies:

  • Automatic Carbon Transfer System: Real-time adjustment of carbon transfer rates based on online gold analyzer data
  • High-Efficiency Screening System: Dual-layer vibrating screen design achieves carbon recovery rate >99.5%
  • Carbon Concentration Control: Maintains target carbon concentration within ±2g/L per tank

Remove impurities such as calcium carbonate from the carbon surface using dilute hydrochloric acid. Concentrate gold from the carbon at high temperature and pressure within the desorption column. The gold-enriched solution undergoes chemical reactions in the electrolytic cell, where gold is adsorbed to form gold sludge. The desorbed activated carbon can be recycled after high-temperature treatment (approximately 700°C).

Activated-Carbon-Regeneration-Process
Activated-Carbon-Regeneration-Process

Optimized Desorption Process Parameters:

Acid Washing Pretreatment: 3-5% dilute hydrochloric acid, 90°C, 2-4 hours

Desorption Conditions: 1% NaOH + 0.2% NaCN, 130-150°C, 300-500 kPa

Desorption Efficiency: >99.5%, reduced desorption time to 8-12 hours (traditional method requires 24-48 hours)

Electrolytic Recovery: Steel wool cathode, current density 10-20 A/m², gold recovery rate >99.8%

Breakthrough in Thermal Regeneration System:

Regeneration Temperature: 700-750°C (Precise temperature control ±10°C)

Dwell Time: 20-30 minutes

Activity Recovery Rate: 92-95% (Industry average only 75-85%)

Carbon Loss: <2% per regeneration cycle

Impurities are removed from gold slime using nitric or hydrochloric acid to produce crude gold ingots. Electrolytic refining then reduces these into 99.99% refined gold.

Hydrogen peroxide is used to reduce cyanide concentrations in tailings, preventing environmental pollution.

The mining industry is advancing toward full automation, with CIP having abandoned traditional manual control modes. Outdated operational methods directly impact recovery rates. Today’s automation enables precise control.

[Automatic Carbon Transfer System]: Dynamically drives carbon pumps based on real-time gold-loading data, eliminating reliance on fixed schedules for transferring carbon between adsorption columns. Carbon remains near saturated loading prior to desorption, maximizing adsorption efficiency.
[Intelligent Oxygen Regulation]: By continuously monitoring dissolved oxygen levels in the agitation tank, the system automatically adjusts oxygen injection rates. This ensures stable oxidation reactions while preventing excessive oxygen consumption.
[Efficient Tailings Disposal]: Facing increasingly stringent environmental regulations, dry stacking has become standard practice. We integrate high-pressure filters and dewatering screening systems at the end of the CIP circuit, significantly increasing water recovery rates and producing dry tailings cakes ready for direct transport or stockpiling.
This comprehensive closed-loop automation solution not only optimizes gold recovery processes but also achieves data-driven resource minimization and production stability maximization, setting new standards for sustainable mining operations.

1.Intelligent Carbon Management System

– Online Gold Analyzer: Monitors gold concentration in each tank every 30 minutes

– Carbon Gold Load Calculation: Real-time computation of gold load per carbon batch

– Automated Carbon Transfer: Optimizes transfer strategy based on mathematical models

– Carbon Inventory Management: Tracks distribution and status of carbon across the entire plant
Effect: 25% increase in carbon utilization rate, 1.5-2.5% improvement in gold recovery rate

2.Precision Oxygen Control System

– Dissolved Oxygen Sensor: Anti-interference design with ±0.1ppm accuracy

– Adaptive Control: Automatically adjusts control parameters based on ore characteristics

– Feedforward Control: Preemptively adjusts oxygen injection volume based on feed variations

– Energy-Saving Mode: Minimizes oxygen consumption while maintaining leaching rates
Benefits: 30% reduction in oxygen consumption, 25% reduction in cyanide consumption

3.Predictive Maintenance System

– Vibration Monitoring: Real-time vibration analysis of critical equipment

– Temperature Monitoring: Bearing and motor temperature surveillance

– Lubricant Analysis: Online oil quality testing

– AI Failure Prediction: Machine learning-based equipment failure forecasting
Value: 70% reduction in unplanned downtime, 40% reduction in maintenance costs

Comparison DimensionsCIP ProcessCIL ProcessOptimal Recommendations
Applicable Ore TypesComplex minerals, carbonaceous gold oreSimple Oxide Gold OreSelect based on ore characteristics:
Investment CostsHigher (more equipment)Lower (Shorter Flow)Limited investment budget: Choose CIL
Operating CostsLower (reagent savings)Higher (Increased Cyanide Consumption)Long-term operation: Choose CIP
Gold Recovery Rate95-99.5%90-96%High-grade ore: Choose CIP
Operational FlexibilityHigh (stepwise control)Low (Coupled Control)Requires flexible adjustments: Choose CIP
Automation LevelEasily automatedHigher Automation DifficultySmart factory: Choose CIP
Environmental PerformanceGood (cyanide controllable)Moderate (Cyanide Difficult to Control)High environmental requirements: Choose CIP

Differences-Between-Gold-CIP-and-CIL-process

– Simple Oxide Gold Ore → CIL Process
– Complex Carbonaceous Gold Ore → CIP Process
– High-Grade Gold Ore (>5 g/t) → CIP Process
– Low-Grade Gold Ore (<1 g/t) → Requires Economic Evaluation

– Investment Budget: <$5 million → CIL; >$10 million → CIP

– Ore processing capacity: <1,000 t/d → CIL; >2,000 t/d → CIP

– Environmental requirements: Stringent → CIP; General → CIL

– Automation objectives: Fully automated → CIP; Semi-automated → CIL

Question 1: What is the difference between CIP and CIL (Carbon-in-Leach)?

The primary difference lies in the sequence of gold leaching and carbon adsorption.
CIP: Ore undergoes cyanide leaching first, followed by adding activated carbon to a separate adsorption tank for gold adsorption. Leaching and adsorption are conducted in separate steps.
CIL: Activated carbon is directly added to the leaching tank, with leaching and adsorption occurring simultaneously. The CIL process is shorter and currently more mainstream, though “CIP” is often used as a generic term for this process type.

Question 2: Why is activated carbon used?
Activated carbon possesses a large specific surface area and strong adsorption capacity, enabling efficient and selective adsorption of gold cyanide complexes from gold-bearing solutions. This separates gold from the pulp, and the carbon can be regenerated and reused.

Question 3: What are the primary factors affecting gold recovery rates?
Activated carbon activity: Fresh or well-regenerated carbon exhibits superior adsorption capacity.
Carbon concentration and movement: Sufficient carbon must be maintained within the tank, with regular, metered counter-current movement to ensure thorough contact between depleted carbon and rich leachate, as well as between enriched carbon and depleted leachate.
Dissolved oxygen levels: Adequate dissolved oxygen is critical for gold cyanide leaching; oxygen deficiency leads to reduced leaching rates.
Slurry Properties: pH (typically maintained at 10.5-11), temperature, viscosity, and the presence of gold-sequestering substances (e.g., organics, sulfides, copper) all impact efficiency.

Question 4: What is “gold loading capacity”? Why is it important?
This refers to the amount of gold adsorbed per unit weight of activated carbon (e.g., grams of gold per ton of carbon). It serves as a core metric for evaluating carbon adsorption efficiency and production economics. Too low a loading capacity is uneconomical, while excessively high levels may cause premature gold desorption or loss in tailings. Operations must be optimized to achieve the maximum designed capacity before desorption.

Key Performance Indicators Comparison

Comparison DimensionsBefore Renovation (Baseline Condition)After modification (optimized state)IncreaseEconomic Benefits
Gold Recovery Rate86-88% (Significant Fluctuations)94.5% (stable operation)7.50%Annual Revenue Increase: $32 million
Annual Processing Capacity5 million tons/year5.5 million tons/year10%Capacity Enhancement: $12 million
Operating Costs$32/ton$25/ton-22%Annual Savings: $3.85 million
Payback Period3.2 monthsRapid Return on Investment

Critical System Components Comparison

IndicatorBefore RenovationAfter renovationEffectiveness Boost
Recovery Rate87%94.50%7.50%
Annual Revenue+$32 millionDirect Revenue Increase
Operating Costs$32/ton$25/ton-22%
Payback Period3.2 monthsRapid Return on Investment

Process Parameters Comparison

SystemBefore RenovationAfter modificationImprovement Results
Carbon ManagementManual operation, uneven distributionAutomatic transmission, real-time monitoringCarbon Loss ↓71%
Screening Efficiency82-85%99.20%Gold Recovery ↑3.2%
Cyanide Consumption1.1 kg/ton0.55 kg/tonUsage Halved
Level of Automation30%95%Operators ↓62%

Economic Benefits Summary

ParametersBefore ModificationAfter renovationControl Accuracy
Dissolved Oxygen3-10 ppm (high fluctuation)6±0.5ppmStable at 83%
pH Value10-11 (manual)10.8±0.1Automatic Control
Desorption Temperature130±15°C135±3℃Accuracy ↑80%

Summary of Economic Benefits

Investment CategoriesInvestment AmountAnnual RevenuePayback Period
Carbon Management System$1.8 million$6.2 million3.5 months
Automation System$2.8 million$4.5 million7.5 months
Screening System$950,000 $3.2 million3.6 months
Total$9.4 million$22 million3.2 months

In the gold carbon-in-pulp extraction process, every 1% increase in recovery rate translates to millions of dollars in annual revenue. The key to achieving this lies not in complex chemical formulations, but in a refined carbon management system. Optimizing each stage—from carbon screening, transportation, and adsorption to regeneration—delivers tangible economic returns.

CHUNLEI’s experience across over 200 CIP projects demonstrates that scientific carbon management can boost gold recovery by 3-8% and shorten the payback period to 3-6 months. Against the backdrop of elevated gold prices and increasingly stringent environmental regulations, optimizing CIP processes is not merely a pursuit of technology but a strategic investment in corporate competitiveness.

Remember: In CIP processes, carbon is not merely an adsorbent—it is the carrier of gold. Managing carbon effectively means managing your gold profits.

CHUNLEI Global CIP Technology Expert Team – Providing Professional Technical Support 24/7.

Contact CHUNLEI today to explore your  Gold Ore Purification and Processing needs.

The prev: The next:

Related recommendations

  • Hematite Dressing Production Line

    475

    Hematite Dressing Production Line Process Introduction Hematite is an important iron ore, and its beneficiation process is complex and diverse, mainly including gravity separation, magnetic separation, flotation and roasting separa...

    View details
  • Sulfide Ore Processing Technology

    686

    Sulfide gold ores, particularly those containing pyrite and arsenopyrite, are crucial sources for gold extraction and are also the most notorious “refractory gold ores.” The mineral processing techniques employed for these ores form the core proc...

    View details
  • Dry Ball Mill

    436

    A variety of models are available | Get the free price list! Wet ball mill, Dry ball mill is a horizontal cylindrical rotating device with gear drive along the outer edge, two bins, lattice type ball mill, adopts gro...

    View details
  • Cement Vertical Roller Mill vs Ball Mill

    595

    Ball mills and vertical roller mills are two mainstream grinding equipment. Vertical roller mills offer higher production efficiency, while ball mills are the preferred choice for ensuring product quality. This article will detail the differences...

    View details